organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 6-ethoxy-10-(3-methoxypropyl)-9-methyl-11-thioxo-8-oxa-10,12-diazatricyclo[7.3.1.0^{2,7}]trideca-2,4,6-triene-13-carboxylate

I. S. Konovalova,^a* O. V. Zaremba,^b S. S. Kovalenko,^b V. P. Chernykh,^b S. M. Kovalenko,^b V. N. Baumer^a and O. V. Shishkin^a

^aSTC 'Institute for Single Crystals', National Academy of Sciences of Ukraine, 60 Lenina Ave., Kharkiv 61001, Ukraine, and ^bDepartment of Pharmaceutical Chemistry, National University of Pharmacy, 4 Blyukhera Ave., Kharkiv 61002, Ukraine

Correspondence e-mail: irinak@xray.isc.kharkov.com

Received 19 November 2007; accepted 20 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.066; data-to-parameter ratio = 14.5.

Comparison of the title compound, C₂₀H₂₈N₂O₅S, with related structures shows that the presence of the alkyl substituents influences the conformation of the rings in the frame fragment. The molecules form hydrogen-bonded centrosymmetric dimers due to an $N-H \cdots S$ intermolecular interaction.

Related literature

For related literature, see: Baldwin et al. (1986); Biginelli, (1893); Fu et al. (2002); Kettmann & Svetlík (1996, 1997); Kettmann et al. (1996); Zefirov & Zorky (1995).

Experimental

Crystal data

$C_{20}H_{28}N_2O_5S$	$\gamma = 100.096 \ (12)^{\circ}$
$M_r = 408.50$	V = 1062.5 (4) Å ³
Triclinic, $P\overline{1}$	Z = 2
a = 9.7612 (16) Å	Mo $K\alpha$ radiation
b = 10.3405 (17) Å	$\mu = 0.19 \text{ mm}^{-1}$
c = 12.309 (2) Å	T = 293 (2) K
$\alpha = 107.354 \ (13)^{\circ}$	$0.40 \times 0.20 \times 0.20$ mm
$\beta = 109.709 \ (13)^{\circ}$	

Data collection

Siemens P3/PC diffractometer Absorption correction: none 3927 measured reflections 3737 independent reflections 2151 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	257 parameters
$wR(F^2) = 0.066$	H-atom parameters constrained
S = 0.89	$\Delta \rho_{\rm max} = 0.19 \text{ e } \text{\AA}^{-3}$
3737 reflections	$\Delta \rho_{\rm min} = -0.12 \text{ e } \text{\AA}^{-3}$

 $R_{\rm int} = 0.053$ 2 standard reflections

every 98 reflections

intensity decay: none

Table 1

Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ D - H $H \cdot \cdot \cdot A$ $D \cdots A$ $N1\!-\!H1N\!\cdot\cdot\cdot\!S1^i$ 0.86 2.62 3.3973 (17) 152

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: P3 (Siemens, 1989); cell refinement: P3; data reduction: XDISK (Siemens, 1991); program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors thank Svitlana V. Shishkina for help in the preparation of the manuscript and for valuable discussions.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2144).

References

- Baldwin, J. J., Claremon, D. A. & McClure, D. E. (1986). US Patent 4609494 A 19860902.
- Biginelli, P. (1893). Gazz. Chim. Ital, 23, 360-413.
- Fu, N.-Y., Yuan, Y.-F., Cao, Z., Wang, S.-W., Wang, J.-T. & Peppe, C. (2002). Tetrahedron, 58, 4801-4807.
- Kettmann, V., Drimal, J. & Svetlik, J. (1996). Pharmazie, 51, 747-750.
- Kettmann, V. & Svetlik, J. (1996). Acta Cryst. C52, 1496-1499.
- Kettmann, V. & Svetlík, J. (1997). Acta Crvst. C53, 1493-1495.
- Sheldrick, G. M. (1998). SHELXTL. PC Version. Revision 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1989). P3. Siemens Analytical X-ray Instruments, Inc., Karlsruhe, Germany.
- Siemens (1991). XDISK. Siemens Analytical X-ray Instruments, Inc., Karlsruhe, Germany.
- Zefirov, Yu. V. & Zorky, P. M. (1995). Usp. Khim. 64, 446-460.

Acta Cryst. (2007). E63, 04906 [doi:10.1107/S1600536807061247]

Ethyl 6-ethoxy-10-(3-methoxypropyl)-9-methyl-11-thioxo-8-oxa-10,12diazatricyclo[7.3.1.0^{2,7}]trideca-2,4,6-triene-13-carboxylate

I. S. Konovalova, O. V. Zaremba, S. S. Kovalenko, V. P. Chernykh, S. M. Kovalenko, V. N. Baumer and O. V. Shishkin

Comment

Some derivatives of 2,6-methano-2H-1,3,5-benzothiadiazocine and -benzoxadiazocine have been studied due to their biological activity as perspective calcium channel blockers (Baldwin et al., 1986; Kettmann et al., 1996; Kettmann & Svetlik, 1996, 1997). We have performed an X-ray diffraction study of a new member of this group, the title compound $C_{20}H_{28}N_2O_5S_1$ (I). Tetrahydropyrimidine-2-thione and tetrahydropyran rings adopt in (I) a conformation which is intermediate between half-chair and sofa. Maximum deviations from the tetrahydropyrimidine and the tetrahydropyrane mean planes correspond to atoms C1, C10 (0.28 A° , -0.54 A°) and C8,C10 (0.21 A° , -0.59 A°), respectively. Comparison of the ring conformations in (I) and some of its analogues (Kettmann et al., 1996b; Fu et al., 2002; Kettmann et al., 1997) indicates that the presence of substituent at the nitrogen atoms is probably the reason for some deformation in the heterocycles conformation. The ester substituent in (I) is planar within 0.01 A° and coplanar to the C8—C10 bond (the C8—C10—C11—O2 torsion angle is 2.2 (3) °). The methoxybuthyl substituent adopts instead an orthogonal orientation with respect to the tetrahydropyrimidine ring (the C9-N2-C16-C17 torsion angle is -92.7 (2) °) probably due to the repulsion between some of its atoms and the tione and the methyl groups (as sugested by the short intramolecular contacts C20...H16A 2.43 Å (van der Waals radii sum is 2.87 Å, Zefirov & Zorky, 1995), H16A…H20C 2.12 Å [2.32 Å], S1…H16B is 2.53 Å [3.01 Å]). The ethoxy substituent is turned with respect to the plane of the aromatic ring (the C5—C6—O4—C14 torsion angle is 17.6 (3) °) probably due to the repulsion between atoms of these fragments (shortened intramolecular contacts C14...H5 2.59 Å [van der Waals radii sum is 2.87 Å], C5…H14A 2.71 Å [2.87 Å]). In the crystal phase the molecules of (I) form centrosymmetric dimers due to a weak intermolecular hydrogen bond (Table 1).

Experimental

The synthesis was carried out according to the Biginelli reaction (Biginelli, 1893). 2-Hydroxy-3-etoxysalicylic aldehyde (0,01 mol), *N*-(3-methoxypropyl)-thiourea and ethyl acetoacetate (0,015 mol) were mixed in 10 ml of ethanol. 3 drops of concentrated HCL were added. Raw crystals of the title compound were grown during 2 days at room temperature; they were further filtered, washed in ethanol and dried at room temperature. Crystals apt for *x*-ray diffraction were obtained by quick evaporation of a solution of (I) in dimethylformamide.

Refinement

All hydrogen atoms were located from electron density difference maps, idealized and included in the refinement in the riding approximation with U_{iso} constrained to be 1.5 times U_{eq} of the carrier atom for the methyl groups and 1.2 times U_{eq} of the carrier atom for the other atoms.

Figures

Fig. 1. Molecular view of the title compound with atomic numbering. Displacement ellipsoids drawn at the 50% probability level.

Ethyl 6-ethoxy-10-(3-methoxypropyl)-9-methyl-11-thioxo-8-oxa-10,12- diazatricyclo[7.3.1.0^{2,7}]trideca-2,4,6-triene-13-carboxylate

Cr	ysta	al data	
a			

$\mathrm{C_{20}H_{28}N_{2}O_{5}S}$	Z = 2
$M_r = 408.50$	$F_{000} = 436$
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.277 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 9.7612 (16) Å	Cell parameters from 36 reflections
b = 10.3405 (17) Å	$\theta = 8-22^{\circ}$
c = 12.309 (2) Å	$\mu = 0.19 \text{ mm}^{-1}$
$\alpha = 107.354 \ (13)^{\circ}$	T = 293 (2) K
$\beta = 109.709 \ (13)^{\circ}$	Block, colourless
$\gamma = 100.096 \ (12)^{\circ}$	$0.40 \times 0.20 \times 0.20 \text{ mm}$
$V = 1062.5 (4) Å^3$	
Data collection	

Siemens P3/PC diffractometer	$R_{\rm int} = 0.053$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 25.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 2.2^{\circ}$
T = 293(2) K	$h = -11 \rightarrow 10$
$\theta/2\theta$ scans	$k = -12 \rightarrow 11$
Absorption correction: none	$l = 0 \rightarrow 14$
3927 measured reflections	2 standard reflections
3737 independent reflections	every 98 reflections
2151 reflections with $I > 2\sigma(I)$	intensity decay: ?

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.066$	$w = 1/[\sigma^2(F_o^2) + (0.0177P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 0.89	$(\Delta/\sigma)_{\text{max}} = 0.001$
3737 reflections	$\Delta \rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$
257 parameters	$\Delta \rho_{min} = -0.12 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or e	guivalent	isotroi	pic dis	nlacement	narameters ($(Å^2$)
1 1 00011011011	anomne	0001011101005	<i>cirici</i> 150	onopie	01 01	100000000000000000000000000000000000000	1501101	sec cus	pracement	parameters ((** /	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.33397 (6)	0.30050 (6)	0.46821 (5)	0.05561 (17)
C1	0.51711 (19)	0.33456 (17)	0.22987 (15)	0.0366 (4)
H1	0.5496	0.4221	0.2172	0.044*
C2	0.64837 (19)	0.27649 (17)	0.26528 (15)	0.0360 (4)
C3	0.8001 (2)	0.36494 (19)	0.33397 (16)	0.0447 (5)
H3	0.8220	0.4630	0.3576	0.054*
C4	0.9156 (2)	0.3074 (2)	0.36622 (18)	0.0559 (6)
H4	1.0160	0.3669	0.4110	0.067*
C5	0.8859 (2)	0.1622 (2)	0.33345 (18)	0.0560 (6)
Н5	0.9659	0.1246	0.3567	0.067*
C6	0.7364 (2)	0.0724 (2)	0.26571 (17)	0.0471 (5)
C7	0.61870 (19)	0.13107 (18)	0.23001 (16)	0.0365 (4)
01	0.47460 (13)	0.03496 (12)	0.15539 (11)	0.0435 (3)
C8	0.34663 (19)	0.09174 (18)	0.13639 (16)	0.0404 (5)
N2	0.31829 (16)	0.12553 (14)	0.25062 (13)	0.0401 (4)
С9	0.37102 (19)	0.25931 (18)	0.33937 (16)	0.0384 (4)
N1	0.45580 (16)	0.36240 (14)	0.32376 (13)	0.0405 (4)
H1N	0.4750	0.4493	0.3715	0.049*
C10	0.38594 (19)	0.22459 (17)	0.11061 (16)	0.0382 (4)

H10	0.4230	0.2022	0.0446	0.046*
C11	0.2556 (2)	0.2852 (2)	0.07013 (18)	0.0513 (5)
O2	0.12758 (17)	0.24063 (17)	0.06021 (17)	0.0882 (5)
03	0.30182 (15)	0.39880 (15)	0.04911 (12)	0.0590 (4)
C12	0.1892 (3)	0.4702 (3)	0.0106 (2)	0.0770 (7)
H12A	0.1508	0.5006	0.0740	0.115*
H12B	0.1038	0.4057	-0.0671	0.115*
C13	0.2648 (3)	0.5951 (3)	-0.0066 (3)	0.1075 (10)
H13A	0.3445	0.6614	0.0721	0.161*
H13B	0.1910	0.6403	-0.0375	0.161*
H13C	0.3081	0.5645	-0.0656	0.161*
O4	0.69411 (16)	-0.07243 (14)	0.22771 (13)	0.0640 (4)
C14	0.7999 (3)	-0.1341 (3)	0.2869 (3)	0.1045 (10)
H14A	0.8463	-0.0810	0.3767	0.157*
H14B	0.8803	-0.1313	0.2573	0.157*
C15	0.7188 (4)	-0.2819 (3)	0.2576 (2)	0.1044 (10)
H15A	0.6465	-0.2834	0.2946	0.157*
H15B	0.7909	-0.3275	0.2906	0.157*
H15C	0.6658	-0.3316	0.1686	0.157*
C16	0.2414 (2)	0.0061 (2)	0.27311 (19)	0.0579 (6)
H16A	0.1618	-0.0635	0.1944	0.087*
H16B	0.1933	0.0414	0.3282	0.087*
C17	0.3498 (3)	-0.0645 (3)	0.3302 (2)	0.0807 (7)
H17A	0.4396	0.0082	0.3992	0.121*
H17B	0.3825	-0.1153	0.2684	0.121*
C18	0.2826 (3)	-0.1691 (3)	0.3784 (3)	0.0983 (9)
H18A	0.3637	-0.1959	0.4291	0.148*
H18B	0.2353	-0.1236	0.4304	0.148*
O5	0.17768 (19)	-0.28630 (17)	0.28194 (14)	0.0856 (5)
C19	0.1400 (4)	-0.3987 (3)	0.3224 (3)	0.1141 (11)
H19A	0.2311	-0.4201	0.3624	0.171*
H19B	0.0684	-0.4819	0.2514	0.171*
H19C	0.0954	-0.3692	0.3805	0.171*
C20	0.2177 (2)	-0.02969 (19)	0.02500 (17)	0.0551 (6)
H20A	0.2327	-0.0366	-0.0495	0.083*
H20B	0.1220	-0.0122	0.0166	0.083*
H20C	0.2168	-0.1172	0.0373	0.083*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0581 (3)	0.0510(3)	0.0540 (3)	0.0063 (3)	0.0338 (3)	0.0092 (3)
C1	0.0397 (11)	0.0283 (9)	0.0453 (11)	0.0049 (8)	0.0210 (9)	0.0179 (9)
C2	0.0405 (11)	0.0346 (10)	0.0368 (10)	0.0070 (9)	0.0215 (9)	0.0151 (8)
C3	0.0422 (12)	0.0348 (10)	0.0487 (12)	0.0044 (9)	0.0149 (10)	0.0137 (9)
C4	0.0366 (12)	0.0634 (15)	0.0571 (14)	0.0079 (11)	0.0116 (10)	0.0225 (11)
C5	0.0446 (13)	0.0622 (14)	0.0630 (14)	0.0221 (11)	0.0191 (11)	0.0268 (11)
C6	0.0553 (13)	0.0416 (12)	0.0527 (13)	0.0192 (11)	0.0271 (11)	0.0211 (10)

C7	0.0349 (10)	0.0351 (10)	0.0399 (11)	0.0082 (9)	0.0162 (9)	0.0153 (9)
01	0.0399 (8)	0.0322 (7)	0.0547 (8)	0.0098 (6)	0.0201 (6)	0.0120 (6)
C8	0.0342 (11)	0.0348 (10)	0.0453 (12)	0.0045 (9)	0.0151 (9)	0.0113 (9)
N2	0.0434 (9)	0.0289 (8)	0.0488 (9)	0.0050 (7)	0.0250 (8)	0.0131 (7)
C9	0.0329 (10)	0.0321 (10)	0.0455 (11)	0.0074 (8)	0.0140 (9)	0.0129 (9)
N1	0.0485 (10)	0.0244 (8)	0.0482 (10)	0.0090 (7)	0.0260 (8)	0.0082 (7)
C10	0.0358 (10)	0.0355 (10)	0.0365 (11)	0.0043 (8)	0.0128 (9)	0.0115 (8)
C11	0.0490 (14)	0.0498 (13)	0.0529 (13)	0.0130 (11)	0.0176 (11)	0.0222 (10)
O2	0.0411 (9)	0.0877 (12)	0.1408 (16)	0.0196 (8)	0.0280 (10)	0.0619 (11)
O3	0.0648 (9)	0.0600 (9)	0.0669 (10)	0.0277 (8)	0.0284 (8)	0.0378 (8)
C12	0.102 (2)	0.0726 (17)	0.0708 (16)	0.0537 (16)	0.0323 (15)	0.0360 (14)
C13	0.141 (3)	0.0629 (18)	0.111 (2)	0.0521 (18)	0.035 (2)	0.0318 (17)
O4	0.0663 (10)	0.0432 (9)	0.0851 (11)	0.0258 (7)	0.0271 (8)	0.0281 (8)
C14	0.118 (2)	0.0620 (18)	0.132 (2)	0.0471 (17)	0.032 (2)	0.0467 (17)
C15	0.164 (3)	0.0660 (18)	0.110(2)	0.0559 (18)	0.068 (2)	0.0463 (16)
C16	0.0695 (15)	0.0403 (12)	0.0606 (14)	0.0024 (11)	0.0344 (12)	0.0147 (10)
C17	0.0720 (16)	0.0715 (16)	0.0985 (19)	0.0092 (14)	0.0266 (15)	0.0502 (15)
C18	0.109 (2)	0.0844 (19)	0.095 (2)	0.0057 (17)	0.0273 (18)	0.0573 (17)
O5	0.1038 (13)	0.0639 (11)	0.0701 (11)	-0.0084 (10)	0.0246 (10)	0.0334 (9)
C19	0.164 (3)	0.0719 (18)	0.115 (2)	0.0061 (19)	0.063 (2)	0.0579 (17)
C20	0.0458 (12)	0.0484 (13)	0.0493 (12)	0.0006 (10)	0.0119 (10)	0.0067 (10)

Geometric parameters (Å, °)

S1—C9	1.6927 (18)	C12—C13	1.481 (3)
C1—N1	1.451 (2)	C12—H12A	0.9700
C1—C2	1.497 (2)	C12—H12B	0.9700
C1—C10	1.521 (2)	C13—H13A	0.9600
C1—H1	0.9800	С13—Н13В	0.9600
C2—C7	1.381 (2)	С13—Н13С	0.9600
C2—C3	1.401 (2)	O4—C14	1.416 (3)
C3—C4	1.362 (3)	C14—C15	1.466 (3)
С3—Н3	0.9300	C14—H14A	0.9700
C4—C5	1.382 (3)	C14—H14B	0.9700
C4—H4	0.9300	C15—H15A	0.9600
C5—C6	1.389 (3)	C15—H15B	0.9600
С5—Н5	0.9300	C15—H15C	0.9600
C6—O4	1.367 (2)	C16—C17	1.490 (3)
C6—C7	1.394 (2)	C16—H16A	0.9700
C7—O1	1.3798 (19)	С16—Н16В	0.9700
O1—C8	1.450 (2)	C17—C18	1.532 (3)
C8—N2	1.476 (2)	С17—Н17А	0.9700
C8—C10	1.514 (2)	С17—Н17В	0.9700
C8—C20	1.515 (2)	C18—O5	1.346 (3)
N2—C9	1.357 (2)	C18—H18A	0.9700
N2—C16	1.478 (2)	C18—H18B	0.9700
C9—N1	1.334 (2)	O5—C19	1.432 (2)
N1—H1N	0.8600	C19—H19A	0.9600
C10—C11	1.516 (3)	C19—H19B	0.9600

C10—H10	0.9800	С19—Н19С	0.9600
C11—O2	1.204 (2)	C20—H20A	0.9600
C11—O3	1.313 (2)	C20—H20B	0.9600
O3—C12	1.456 (2)	С20—Н20С	0.9600
N1—C1—C2	111.76 (14)	O3—C12—H12B	110.1
N1-C1-C10	105.55 (13)	C13—C12—H12B	110.1
C2-C1-C10	109.75 (14)	H12A—C12—H12B	108.4
N1—C1—H1	109.9	С12—С13—Н13А	109.5
C2—C1—H1	109.9	С12—С13—Н13В	109.5
С10—С1—Н1	109.9	H13A—C13—H13B	109.5
C7—C2—C3	118.97 (17)	С12—С13—Н13С	109.5
C7—C2—C1	118.86 (15)	H13A—C13—H13C	109.5
C3—C2—C1	122.17 (16)	H13B—C13—H13C	109.5
C4—C3—C2	120.08 (18)	C6—O4—C14	118.18 (17)
С4—С3—Н3	120.0	O4—C14—C15	108.7 (2)
С2—С3—Н3	120.0	O4—C14—H14A	109.9
C3—C4—C5	121.07 (19)	C15—C14—H14A	109.9
C3—C4—H4	119.5	O4—C14—H14B	109.9
C5—C4—H4	119.5	C15—C14—H14B	109.9
C4—C5—C6	119.90 (19)	H14A—C14—H14B	108.3
С4—С5—Н5	120.1	С14—С15—Н15А	109.5
С6—С5—Н5	120.1	C14—C15—H15B	109.5
O4—C6—C5	124.83 (18)	H15A—C15—H15B	109.5
O4—C6—C7	116.18 (17)	C14—C15—H15C	109.5
C5—C6—C7	118.97 (18)	H15A—C15—H15C	109.5
01	123.19 (16)	H15B-C15-H15C	109.5
01	115.82 (15)	N2-C16-C17	112.23 (17)
C2—C7—C6	120.96 (16)	N2—C16—H16A	109.2
C7—O1—C8	117.03 (13)	C17—C16—H16A	109.2
01 - C8 - N2	108 40 (14)	N2-C16-H16B	109.2
01 - C8 - C10	108 89 (13)	C17—C16—H16B	109.2
N_{2} C8 C10	110 53 (14)	H16A—C16—H16B	107.9
01 - C8 - C20	102.78 (14)	C16—C17—C18	114.0 (2)
$N_{2}^{2} = C_{2}^{2}$	112 72 (15)	C16—C17—H17A	108.8
C10-C8-C20	113.09(15)	C18 - C17 - H17A	108.8
C9 - N2 - C8	122 51 (14)	C16—C17—H17B	108.8
C9 - N2 - C16	119 32 (15)	C18—C17—H17B	108.8
C8 = N2 = C16	117.94 (14)	H17A—C17—H17B	107.7
N1 - C9 - N2	118.16(16)	05-018-017	110.4(2)
N1 - C9 - S1	118.88 (13)	05 - C18 - H18A	109.6
$N^2 - C^9 - S^1$	122.96 (13)	C17— $C18$ — $H18A$	109.6
C9 - N1 - C1	122.96 (13)	05-C18-H18B	109.6
C9 = N1 = H1N	118.5	C17—C18—H18B	109.6
C1— $N1$ — $H1N$	118.5	H18A-C18-H18B	108.1
C8 - C10 - C11	115.46 (15)	$C_{18} - C_{19}$	111 30 (18)
C8-C10-C1	106 56 (14)	O5-C19-H19A	109 5
$C_{11} - C_{10} - C_{1}$	110 17 (14)	05-C19-H19B	109.5
C8-C10-H10	108.1	H19A_C19_H19B	109.5
C11_C10_H10	108.1	05H19C	109.5
	100.1	05-017-11170	107.5

C1-C10-H10	108.1	H19A—C19—H19C	109.5
O2—C11—O3	123.1 (2)	H19B—C19—H19C	109.5
O2—C11—C10	126.59 (19)	C8—C20—H20A	109.5
O3—C11—C10	110.29 (17)	C8—C20—H20B	109.5
C11—O3—C12	116.75 (17)	H20A—C20—H20B	109.5
O3—C12—C13	108.0 (2)	C8—C20—H20C	109.5
O3—C12—H12A	110.1	H20A—C20—H20C	109.5
C13—C12—H12A	110.1	H20B—C20—H20C	109.5
N1—C1—C2—C7	88.77 (18)	C8—N2—C9—S1	177.75 (13)
C10—C1—C2—C7	-28.0 (2)	C16—N2—C9—S1	-7.9 (2)
N1—C1—C2—C3	-90.64 (19)	N2-C9-N1-C1	-11.6 (2)
C10—C1—C2—C3	152.62 (16)	S1—C9—N1—C1	168.40 (12)
C7—C2—C3—C4	-0.7 (3)	C2-C1-N1-C9	-74.0 (2)
C1—C2—C3—C4	178.67 (16)	C10-C1-N1-C9	45.3 (2)
C2—C3—C4—C5	-0.7 (3)	O1-C8-C10-C11	171.51 (14)
C3—C4—C5—C6	0.5 (3)	N2-C8-C10-C11	-69.51 (19)
C4—C5—C6—O4	179.55 (18)	C20—C8—C10—C11	57.9 (2)
C4—C5—C6—C7	1.2 (3)	O1—C8—C10—C1	-65.80 (17)
C3—C2—C7—O1	-175.56 (15)	N2-C8-C10-C1	53.17 (18)
C1—C2—C7—O1	5.0 (2)	C20—C8—C10—C1	-179.38 (15)
C3—C2—C7—C6	2.4 (2)	N1-C1-C10-C8	-63.55 (17)
C1—C2—C7—C6	-177.02 (16)	C2-C1-C10-C8	57.03 (17)
O4—C6—C7—O1	-3.0 (2)	N1-C1-C10-C11	62.40 (18)
C5—C6—C7—O1	175.50 (16)	C2-C1-C10-C11	-177.02 (15)
O4—C6—C7—C2	178.85 (15)	C8—C10—C11—O2	2.2 (3)
C5—C6—C7—C2	-2.6 (3)	C1-C10-C11-O2	-118.6 (2)
C2—C7—O1—C8	-13.4 (2)	C8—C10—C11—O3	-179.32 (15)
C6—C7—O1—C8	168.57 (15)	C1-C10-C11-O3	59.9 (2)
C7—O1—C8—N2	-76.22 (17)	O2-C11-O3-C12	-0.8 (3)
C7—O1—C8—C10	44.07 (19)	C10-C11-O3-C12	-179.37 (15)
C7—O1—C8—C20	164.25 (14)	C11—O3—C12—C13	179.40 (18)
O1—C8—N2—C9	98.62 (17)	C5—C6—O4—C14	17.6 (3)
C10—C8—N2—C9	-20.7 (2)	C7—C6—O4—C14	-164.0 (2)
C20—C8—N2—C9	-148.30 (16)	C6—O4—C14—C15	164.75 (18)
O1-C8-N2-C16	-75.83 (18)	C9—N2—C16—C17	-92.7 (2)
C10-C8-N2-C16	164.90 (15)	C8—N2—C16—C17	81.9 (2)
C20-C8-N2-C16	37.2 (2)	N2-C16-C17-C18	168.78 (19)
C8—N2—C9—N1	-2.3 (2)	C16—C17—C18—O5	70.9 (3)
C16—N2—C9—N1	172.10 (16)	C17—C18—O5—C19	166.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
N1—H1N····S1 ⁱ	0.86	2.62	3.3973 (17)	152
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 1

